Classical methods for the study of bacterial pathogens have proven to be inadequate to inform with respect to chronic infections including those associated with arthroplasties. Modern methods of analysis have demonstrated that bacterial growth patterns, ecology, and intra-species heterogeneity are more complex than were envisioned by early microbiologists. Cultural methods were developed to study acute, epidemic infections, but it is now recognized that the phenotype associated with these diseases represents only a minor aspect of the bacterial life cycle, which consists of planktonic, attachment, biofilm, and dispersal phases. Over 99% of bacteria in natural populations are found in biofilms which contain multiple ecological niches and numerous phenotypes. Unfortunately, the effort to develop antibiotics has been directed solely at the planktonic minority (associated with systemic illness) which explains our inability to eradicate chronic infections. In this study we establish a new rubric, bacterial plurality, for the understanding of bacterial ecology and evolution with respect to chronic infection. The fundamental tenets of bacterial plurality are that the bacteria within an infecting population display multiple phenotypes and possess multiple genotypes. Phenotypic plurality is embodied in the biofilm paradigm and genotypic plurality is embodied in the concepts of the supra-genome and the distributed genome hypothesis. It is now clear that bacterial diversity provides bacterial populations, as a whole, the ability to persist in the face of a multi-faceted host response.

Full-text article