Abstract

Bone tissue is osteoconductive. In particular, cancellous bone with its porous and highly interconnected trabecular architecture allows easy ingrowth of surrounding tissues. When placed in an osseous environment, living tissue for the host bed migrates into the cancellous structure, which results in new bone formation and incorporation of that structure. This is the process of osteoconduction. The mineral and collagenous components of bone are osteoconductive. Osteoconduction also is observed in fabricated materials that have porosity similar to that of bone structure. Corallin ceramics, hydroxyapatite beads, and combinations of hydroxyapatite and collagen all have osteoconductive properties, and porous metals and biodegradable polymers. Osteoconduction appears to be optimized in devices that mimic not only bone structure, but also bone chemistry. The incorporation of calcium salts and collagen by osteoconductive matrices leads to more complete ingrowth with new bone formation.

Full-text article