Interactions between the immune system and skeletal muscle may play a significant role in modulating the course of muscle injury and repair after modified musculoskeletal loading. Current evidence indicates that activation of the complement system is an early event during modified loading, which then leads to inflammatory cell invasion. However, the functions of those inflammatory cells are complex and they seem to be capable of promoting additional injury and repair. Recent findings implicate an early invading neutrophil population in increasing muscle damage that is detected by the presence of muscle membrane lesions. Macrophages that invade subsequently serve to remove cellular debris, and seem to promote repair. However, macrophages also have the ability to increase damage in muscle in which there is an impaired capacity to generate nitric oxide. In vivo and in vitro evidence indicates that muscle-derived nitric oxide can serve an important role in protecting muscle from membrane damage by invading inflammatory cells. Collectively, these findings indicate that the dynamic balance between inflammatory cells, the complement system, and muscle-derived free radicals can play important roles in the secondary damage of muscle during modified musculoskeletal loading.

Full-text article