Abstract

Advances in the fields of biotechnology and biomaterials offer the orthopaedic surgeon the exciting possibility of repair or regeneration of tissue lost to injury, disease, or aging. The promising area of tissue engineering represents a multidisciplinary approach aimed at solving some of the most perplexing biologic problems, namely, the creation of new tissues and organs similar to the original tissues and organs. In addition, strategies using new synthetic polymer formulations can facilitate tissue replacement and represent alternatives to tissue regeneration in certain conditions. Although biotechnology has broad application over many medical specialties, orthopaedics is receiving a large focus of the research effort devoted to techniques for developing bone, articular cartilage, ligaments, and tendons. Because bioengineered tissue and/or techniques to stimulate tissue regeneration soon may be used clinically, orthopaedic surgeons should have a working knowledge of the basic concepts involved. Terms, such as biomaterial, biotechnology, matrices of synthetic or biologic polymers or both, adhesion, cohesion, porosity, induction, conduction, stem cell, progenitor cell, mesenchymal cell, tissue growth factor, bone morphogenetic protein, mitogenic and chemotactic factors, and numerous other terms will become part of the working language of clinicians of the twenty-first century.

Full-text article